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Abstract––Hyperspetral Sequence image is compressed using a 3D discrete wavelet transform (3D DWT) to 

decorrelate the three dimensions of hyperspectral image. Than the sequence is encoded efficiently by the 3D 

SPIHT algorithm, which operates on the pyramid structure of wavelet coefficients obtained. After 

decompression, the image evaluated by the PSNR, are faithfully reproduced and the memory space required for 

storage and transmission has been reduced. The Building of GUI in MATLAB has facilitated the use 

of algorithms developed and the tests of the compression for different parameters. 
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I. INTRODUCTION 
Sensors which they are used to observe the Earth from space or to explore deep space, have always 

sought to acquire data of better quality, to improve the scientific information provided. The improvement of the 

performances of these sensors requires the improvement of space resolution, radiometric precision and the 

number of spectral bands acquired.  Instruments with high spectral resolution fall within this global evolution. 

These sensors are named hyperspectral sensors [1]. 

Hyperspectral sensors are capable of recording information in multitude spectral bands, much narrower 

and contiguous, in the visible and infrared electromagnetic spectrum portions. Hyperspectral data provide more 

detailed information of the spectral properties of a scene (fine spectral signature). Typically, each pixel in the 

image is represented by hundred values, corresponding to different wavelengths. These values correspond to a 

sampling of the continuous spectrum emitted by the pixel.  This sampling of the spectrum with very high 

resolution allows identification and a more accurate discrimination of the objects then multispectral data [1]. 

The availability of the spectral information of each pixel leads to new applications in all areas using remote 

sensing; we can name: geology (identification of the mineral), the forestry (health state, identification of kinds) 

or the management of aquatic environment (quality of waters…). 

         Because of the huge amount of information and their specific properties, compression step becomes a 

crucial part for transmission and storage. Based on the techniques available in the literature, various algorithms 

and standards have been developed to deal with this type of data [2]. For instance, wavelet transform has been 

efficiently used for 2D image coding [3] [4]. Besides, it is considered as the kernel of the standard JPEG2000 

[5]. Extended to volumetric images, JPEG2000 standard has been widely applied to 3D hyperspectral images 

encoding [6]. Afterwards, the 3D wavelet transformation has been efficiently employed for various types of data 

through [2] [7] [8] [9]. Recently, a 3D wavelet decomposition which includes an adaptation of the zero tree 

structure [1] highlighted the potential of using such scheme to com press 3D hyperspectral images.  

This document proposes to adapt the SPIHT to a 3D wavelet coding and to compare the performance of 

2D compression vs. 3D compression in terms of PSNR. 

 

II. COMPRESSION METHOD 
The idea of our scheme of compression adapted to hyperspectral images is represented in Figure1. 

         The 1st step of this compression scheme is the wavelet transform. Its ability to compact the energy on a 

small number of coefficients provides an efficient encoding of the image.   The three-dimensional nature 

(multitude of spectral bands) and the high spectral correlation (narrow bands and contiguous) of hyperspectral 

imaging has led us to expand this wavelet transform to three dimension (3D DWT). This transformation is based 

on the multiresolution decomposition of Mallat [10] [11]; this decomposition is based on the high pass and low 

pass filters deduced from the wavelet and the associated scale function.  

         The 2nd step of this compression scheme is the application of the 3D SPIHT encoder, which exploits the 

pyramidal structure of wavelet coefficients where there are significant correlations between the different sub-

bands. The 3D SPIHT uses three-dimensional trees, thus, isolated large areas of insignificant coefficients; it is 
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what achieving good performance in the compression. The implementation of an entropic encoder does not 

improve the results, so we decided to not implement it in our chain to not increase the complexity of the 

developed algorithm.  

 
Figure 1.  3D Scheme of Compression Adapted to Hyperspectral Images. 

  

III. ADAPTING SPIHT TO 3D WAVELET TRANSFORM 

III.1          Method:  
               The main idea of zero trees encoding, is to use the position of the significant coefficients at the lowest 

resolution to predict the position and value of the significant coefficients at the highest resolution. A tree 

structure is then used to represent the wavelets coefficients. 

SPIHT (Set Partitioning in Hierarchical Tree) [1] [12] [13] is the most popular variant of this type of 

encoding. It was accomplished in 1996 by A. Said and W. Pearlman. We will do in the following the extension 

of the SPIHT to three-dimensional, to be used with the 3D DWT.  

The extension to the 3D images of the SPIHT relies on three-dimensional trees [1] [14]. In the 3D case, 

the root node of the tree (corresponding to the coefficients of the sub-band LLLj for 3D DWT with j levels of 

decomposition) has only seven children, while all other nodes except for ends have eight, in other words, except 

for the root node and the ends of the tree, the link parent/children is the following:  

 

O (i, j, k) =          (1) 

 

 

Where O (i, j, k) represents the set of coordinates of all children of the node (i, j, k).  

 

        SPIHT uses two types of zero trees. The first (type A) consists of a simple root with all its descendants 

to zero for a given plan of bits. Although the zero tree is specified by the coordinates of the root, but the root is 

not included in the tree. The second type of zero trees (type B) is similar but excludes the eight children of the 

root.  Type B contains only grandchildren, great grandchildren…ext.… of the root. 

       To characterize these parent/children relationships in the sub-bands. The following sets are used: 

O (i, j, k): All coordinates of all children of node (i, j, k). 

D (i, j, k): All coordinates of all descendants of node (i, j, k) (type A of zero tree). 

L (i, j, k) =D (i, j, k) − O (i, j, k): All coordinates of all descendants except the children (type B of zero trees). 

        SPIHT stores the significant information in three ordered lists.  These are lists of coordinates (i, j, k) in 

LIP (List of Insignificant Pixels) and LSP (List of Significant Pixels) and they represent coefficients. In the LIS 

(List of Insignificant Sets), they represent the sets D (i, j, k) (type A) or the sets L (i, j, k) (type B).  
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       The LIP contains the coordinates of coefficients that were insignificant in the previous pass. In the 

current pass, they are tested, and those that are significant are moved to the LSP. Similarly, the sets of LIS are 

evaluated in order of entry, and when a set is found significant, it is removed from the list and then partitioned. 

The new sets with more than one item are added to the end of LIS with the type (A or B), while the simple 

coefficients are added to the end of LSP or LIP according to their significance. The list LSP contains the 

coordinates of the coefficients to be visited in the next pass of refinement. The refinement pass transmits the 

  most significant bit of entries of LSP.  

 

 III.2          Algorithm: 
Step 1: Calculation of the starting threshold Tn, given by: 

                 Tn =                (2) 

Step 2: Definite the lists LIP, LSP and LIS of coordinates (i, j, k).  

Step 3: Compare each pixel of LIP to threshold Tn: 

                  If positive, then it will be coded by „11‟. 

                  If negative, then it will be coded by „10‟. 

                  Otherwise it will be code „0‟. 

 

Step 4: For each set of LIS, compare the descendant with the largest absolute value to threshold Tn.  

If type A:  

- If there are descendants greater than Tn, output „1‟ and test the eight children of the node (i, j, k). 

For each of them: 

                  If positive, then it will be coded by „11‟. 

                  If negative, then it will be coded by „10‟. 

                  Otherwise it will be code „0‟. 

                  If children have descendants, put the node (i, j, k) at the end of LIS as type B. 

 

- If there are no descendants greater than Tn, output „0‟. 

If type B:  

-     If there are descendants greater than Tn, output „1‟ and put each one of the eight children of the 

node (i, j, k) as type A 

-     If not, output „0‟. 

Step 5:  Refinement pass.  

Step 6:  Decrement n and return to step 3. 

 

IV. RESULTS AND DISCUSSION 
When using lossy compression techniques, the use of quality measurement is essential for performance 

evaluation. To do this, we will use the PSNR to allow the evaluation of the compression quality of our 

compression algorithm. 

       

  (3)           

 

Where: Peak Signal= ,   q is the number of bits used to encode values. (q=16 for hyperspectral images). This 

equation of PSNR treats the three dimensions of the image. 

A way to give an order of magnitude of the entropy (or at least an upper bound) of hyperspectral 

images is to test the lossless compression methods. We used the following tools on our AVIRIS image: 

– gzip:   LZ77 algorithm; 

– bzip2: Burrows-Wheeler algorithm, and Huffman. 

 

Original gzip bzip2 

size bpp size bpp size bpp 

134.4Mb 16 82.9Mb 9.86 69.6Mb 8.23 

 CR =1.61 CR =1.92 

TABLE I.  Entropy Estimation of Hyperspectral Image. 

 

This allows us to understand that the entropy of hyperspectral images is less than 8.23 bits. For our 

tests, we used a sequence of 32 channels of the Yellowstone scene, acquired in 2006. It is an AVIRIS image that 

can be downloaded from: http://aviris.jpl.nasa.gov/html. 

http://aviris.jpl.nasa.gov/html
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The behavior of different wavelet functions was studied. Three types of wavelet families are used: 

Daubechies (DbN), Symlettes (SymN) and biorthogonal (BioN). In each family of wavelets, we can find a 

wavelet function which gives the optimal solution associated with the order, but this depends on the image.  

         Table.II shows the performance of our algorithm for the decomposition level J = 3 and for different 

families of wavelets.  

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II.  PSNR (DB) for Different Compression Ratio. 

PSNR changes with the different families of wavelets. How each wavelet compact energy of the image 

depends very much on the image itself (spectral content of the image) and each wavelet differs in way that 

characterize this spectral content. 

  

Fig.2 shows the performance of our algorithm for the decomposition level J = 3 and for two biorthogonal 

wavelets (CDF9/7 and LeGall5/3). The PSNR varies with the different wavelets; as we see, the PSNR obtained 

exceed 35 dB for high compression ratio (CR=100), for low compression ratio, we get a good PSNR, exceeding 

50 dB (CR=10). 

 

 

 

 

 

 

 

 

 

Figure 2.  PSNR/CompRatio for CDF9/7 and LeGall5/3. 

 

              We can also see that the CDF9/7 is better than LeGall5/3 in high compression ratio but when 

compression ratio become smaller LeGall5/3 is better. 

        One advantage of SPIHT is a progressive coding by starting with the most significant bits to least 

significant. This allows the algorithm to do a progressive transmission of images, since the decoder can stop 

anywhere in the sequence of bits transmitted and produce the best reconstructed image. At the receiver, you can 

choose the quality, when we increase the flow, we obtain more detailed information and of course the 

image quality is better.  

          Figure 3 shows the compression quality obtained for various compression ratios. You can clearly 

observe an artifact effect in the high compression ratios, this is due to the limited amount of information 

contained in the image (high compression ratio), then when adding information, the quality of the image increases 

(low compression ratio). 

Wavelet 

CR 

Sym 

6 

Sym 

8 

Db 

6 

Db 

8 

CDF 

9/7 

LeGall 

5/3 

20 47.66 47.97 47.66 48.03 47.93 48.17 

30 44.19 45.35 44.19 45.35 45.41 45.30 

40 42.41 43.31 42.41 43.31 43.36 42.84 

50 40.56 41.43 40.56 41.43 41.40 41.17 

60 39.03 40.27 39.03 40.27 40.09 39.39 

70 37.43 38.89 37.43 38.89 38.56 38.04 

80 36.38 37.88 36.38 37.88 37.29 36.51 

90 34.99 36.12 34.99 36.12 36.40 35.55 

100 34.77 34.90 34.77 35.36 35.38 34.78 



Aviris Hyperspectral Images Compression Using 3d Spiht Algorithm  

www.iosrjen.org     35 | P a g e  

Figure 3.         A) : Original Image ; B) : CR=80; C) : CR=20. 

 
The algorithm can be implemented for any image size, but when the image size increases the time 

required for compression and reconstruction of the image also increases. Table III shows the effect of image size 

on quality of compression using the wavelet CDF9 / 7 for a CR = 100. 

We can see that as the size of the sequence increases either that of the space domain (x, y) or / and of the spectral 

domain (z) the execution time of the algorithm increases. When the size of image increases, we get better results, 

especially when spectral domain increases, the results are very good because of the strong spectral correlation 

(the trees of zeros include more coefficients over a single tree, which allows better coding). 

We can deduce from these results, that it is more interesting to design our algorithm to process image 

compression by small block, reducing the size of the space domain and favoring that of the spectral domain. This 

will fully benefit from the strong spectral correlation and reducing the cost of the computational algorithm (by 

reducing the size of the space domain, we reduce the execution time without sacrificing quality). 

 

 

 

Size:128x128x32 Size:256x256x32 

 

J : 3   PSNR : 35.4339 

 

J : 3   PSNR : 35.3807 

 

Size:128x128x64 Size:256x256x64 

J : 3   PSNR : 32.5385    

J : 4   PSNR : 36.9398       

J : 3   PSNR : 32.8579    

J : 4   PSNR : 36.0967       

Size:128x128x128 Size:256x256x128 

J : 3  PSNR : 34.9114       

J : 4  PSNR : 39.5542 

J : 5  PSNR : 39.3759 

J : 3  PSNR : 33.1755       

J : 4  PSNR : 39.3307 

J : 5  PSNR : 39.6357 

TABLE III.  PSNR (dB) Obtained for Different Image Sizes. 

 

 

                To perform this comparison, we compressed each of the 32 channels of our image sequence 

separately, we calculated the PSNR for this sequence, i.e. once all channels are compressed separately (2D DWT 

and 2D SPIHT), we have grouped them to form the compressed 3D cube than we calculated his PSNR. We 

compared the results to those found with the 3D compression (3D DWT and 3D SPIHT). Figure 4 shows the 

PSNR for both types of compression. We can see that the 3D compression, offers more than 10dB of 

improvement at all compression ratios. This implies that the hyperspectral images are highly correlated. 

 

 

 

 

 

 

Spectral Domain 

Spatial Domain 
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  Figure 4.            2D Compression vs. 3D Compression.  

  

V. CONCLUSION 
         The algorithm that we have implemented can be used for any image size. When the size of 

the hyperspectral image increases, the time required for compression and reconstruction of the image also 

increases. It is more interesting to design the algorithm to process on images in small block, reducing the size of 

the space scene and focusing the spectrum scene. This will fully allow to benefit from the high 

spectrum correlation without sacrificing the execution time of the algorithm (by reducing the size of the space 

scene, we reduce the execution time without sacrificing quality). 

        Good performances are obtained by our algorithm because of the superiority of the SPIHT coding; the 

algorithm was tested using hyperspectral image sequence of 32 channels. The results show that the extension to 

the third dimension (spectral dimension) improves the compression quality, the 3D compression takes advantage 

of the high spectral correlation and provides a coding gain much higher than that offered by the 2D 

compression. Our results show a gain up to 10 dB for all compression ratios (by increasing the sequence, we 

increase the results). 
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